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Abstract 

This study explores the application of Physics-Informed Neural Networks (PINNs) to solve the 
two-dimensional steady incompressible Navier-Stokes equations, focusing on Poiseuille flow 
in a rectangular channel. Implemented using the DeepXDE library with a TensorFlow 1.x 
backend, the PINN embeds the governing partial differential equations and boundary 
conditions into its loss function. The neural network architecture consists of four hidden layers, 
each with 64 neurons. A hybrid optimization strategy, combining Adam (10,000 steps) and L-
BFGS-B, ensured robust convergence. The composite loss function, comprising seven 
components (three for momentum and continuity equations, four for boundary conditions), 
decreased significantly, achieving a total test loss of 8.71 × 10ିହ at step 9000. The predicted 
x-velocity component (u) was evaluated against the analytical Poiseuille solution, yielding an  
𝐿ଶ relative error of 0.0861 (8.61%). Visual comparisons confirm that the PINN accurately 
captures the parabolic velocity profile characteristic of Poiseuille flow. This work underscores 
the potential of PINNs as a data-efficient, mesh-free approach for solving fundamental fluid 
dynamics problems, paving the way for their application to more complex flow scenarios. 
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I. INTRODUCTION 

he solution of partial differential equations (PDEs) is a 
cornerstone of scientific and engineering disciplines, 

underpinning advancements in fluid dynamics, heat transfer, 
structural mechanics, and beyond [1]. In fluid dynamics, the 
Navier-Stokes equations, which describe the motion of 
viscous fluids, are particularly critical due to their ability to 
model a wide range of physical phenomena, from laminar 
flows in pipes to turbulent flows in aerospace applications [2]. 
Traditionally, numerical methods such as Finite Difference, 
Finite Element, and Finite Volume techniques have been 

employed to solve these equations [1]. While effective, these 
methods often require extensive computational resources, 
high-quality mesh generation, and significant preprocessing, 
especially for problems involving complex geometries or 
high-dimensional domains [1]. In recent years, the advent of 
machine learning, particularly deep learning, has opened new 
avenues for solving PDEs [3]. Physics-Informed Neural 
Networks (PINNs) represent a paradigm shift by integrating 
the governing physical laws directly into the neural network's 
loss function, combining the universal approximation 
capabilities of neural networks with the rigour of physical 
constraints [4]. Unlike traditional methods, PINNs are mesh-
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free, allowing for greater flexibility in handling irregular 
domains, and can incorporate sparse observational data, 
making them suitable for data-scarce scenarios [3]. Their 
ability to learn solutions directly from the PDEs and boundary 
conditions without requiring extensive labelled datasets has 
positioned PINNs as a promising tool for computational 
physics [3, 4]. Despite their potential, the application of 
PINNs to fluid dynamics problems, particularly the 
incompressible Navier-Stokes equations, remains an active 
area of research. Many studies have focused on simplified or 
one-dimensional problems or have relied on synthetic data to 
validate PINN performance [5, 6]. However, the robustness of 
PINNs in accurately capturing the complex, non-linear 
behaviour of two-dimensional (2D) steady flows, such as 
Poiseuille flow, under realistic boundary conditions, has not 
been thoroughly explored [7]. Moreover, challenges such as 
numerical stability at domain boundaries, optimization 
convergence, and computational efficiency persist, 
particularly when using frameworks like DeepXDE with older 
backends like TensorFlow 1.x [8]. These gaps highlight the 
need for detailed investigations into the practical 
implementation and performance of PINNs for benchmark 
fluid dynamics problems. 

This study addresses these gaps by applying a PINN to 
solve the 2D steady incompressible Navier-Stokes equations 
for Poiseuille flow in a rectangular channel. Poiseuille flow, a 
classical laminar flow between parallel plates driven by a 
pressure gradient, serves as an ideal benchmark due to its well-
established analytical solution [2]. The primary objective is to 
demonstrate the PINN’s ability to accurately predict the 
velocity components (u, v) and pressure field (p) while 
satisfying the governing PDEs and boundary conditions. By 
leveraging the DeepXDE library and a hybrid optimization 
strategy, this work aims to provide a robust and reproducible 
framework for PINN-based fluid dynamics simulations [8,  9, 
10]. The novelty of this research lies in its comprehensive 
evaluation of PINN performance for a 2D steady flow 
problem, focusing on practical implementation details and 
quantitative accuracy metrics [5]. Unlike prior studies that 
often emphasize theoretical formulations or simplified cases, 
this work provides a detailed analysis of loss evolution, 
boundary condition enforcement, and predictive accuracy 
using a realistic Poiseuille flow setup [2]. Additionally, it 
addresses practical challenges such as boundary-related 
numerical warnings and TensorFlow deprecation, offering 
insights into improving PINN implementations [8]. By 
achieving a low L2 relative error accurately and capturing the 
parabolic velocity profile, this study underscores the potential 
of PINNs as a data-efficient, mesh-free alternative to 
traditional computational fluid dynamics (CFD) methods, 
paving the way for their application to more complex flow 
scenarios [6, 11]. 

II. METHODS 

The PINN was implemented using the DeepXDE library [8] 

with a TensorFlow 1.x backend, despite noted deprecation 
warnings.  

A. Governing Equations 

The 2D steady incompressible Navier-Stokes equations 
govern the conservation of mass and momentum for a 
Newtonian fluid. For velocity components u (x-direction), v 
(y-direction), pressure p, and kinematic viscosity ν, the 
equations are: 

1. Continuity Equation (Conservation of Mass): 
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3. Y-momentum Equation: 
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Here, 𝜌 = 1 for simplicity, and 𝜇 = 0.01. 

B. Domain and Boundary Conditions 

The computational domain is a rectangular channel defined by 
𝑥 ∈ [−𝐿, 𝐿], 𝑦 ∈ [−1, 1], 𝑤𝑖𝑡ℎ 𝐿 = 5.0. The boundary 
conditions are: 
- Inflow at x = −L: A parabolic velocity profile for u: 
𝑢(−𝐿, 𝑦) = 4(1 − 𝑦ଶ)                                              (4) 

𝑣(−𝐿, 𝑦) = 0                                                           (5) 

- No-penetration at Top/Bottom Walls (y = ±1): 
𝑣(𝑥, ±1) = 0                                                                (6) 

- Outflow at x = L: Zero pressure gradient: 
డ௣

డ௫
(𝐿, 𝑦) = 0                     (7) 

Warnings about Rectangle boundary normal called on vertices 
were observed, indicating potential numerical issues at 
domain corners. Future work could use PDE(..., 
exclusions=...) to address this [8].  

C. Neural Network Architecture and Training 

The PINN uses a feed-forward neural network with: 
- 2 input neurons (x, y). 
- Fur hidden layers, each with 64 neurons, using tanh 
activation. 
- 3 output neurons (u, v, p). 
Weights were initialized using the Glorot normal distribution 
[12]. The loss function combines residuals of the Navier-
Stokes equations and boundary conditions, using 4000 
collocation points in the domain, 400 boundary points, and 
1000 test points (though 1065 were sampled) [8]. Training 
followed a two-stage strategy: 

1. Adam Optimizer: 10,000 epochs with a learning 
rate of 1 × 10ିଷ for initial convergence [9]. 

2. L-BFGS-B Optimizer: Fine-tuning for higher 
precision [8]. 
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III. RESULTS AND DISCUSSION 

The training process was evaluated by monitoring the 
composite loss function, comprising residuals of the three 
PDEs and four boundary conditions [4].  

A. Loss Evolution During Training  

Table I shows the training and test losses at selected steps. The 
initial high loss at step 0 (9.49) was dominated by the inflow 

boundary condition [8]. Losses decreased consistently with 
the Adam optimizer, reaching a total test loss of 8.71 × 10ିହ 
at step 9000 [9]. The test loss closely tracked the training loss, 
indicating no significant overfitting [4]. The Adam phase took 
approximately 10,177.5 seconds (≈ 2 hours 50 minutes), with 
L-BFGS-B fine-tuning adding 37.15 seconds, yielding 
minimal further improvement [10]. 

Table I. Training and test losses at selected steps. 

Step Train Loss Components Total Train loss 
0 1.21× 10ିଵ 3.72× 10ିଷ 2.28× 10ିଶ 9.15 1.93× 10ିଶ 1.20× 10ିଵ 1.72× 10ିସ 9.49 

1000 
5000 
9000 

10000 

2.26× 10ିସ 
2.98× 10ିହ 
1.23× 10ିହ 
1.91× 10ିହ 

2.98× 10ିସ 
7.10× 10ିହ 
4.45× 10ିହ 
1.16× 10ିସ 

7.37× 10ିହ 
6.47× 10ି଺ 
4.30× 10ି଺ 
6.15× 10ି଺ 

9.64× 10ିସ 
4.43× 10ିହ 
3.32× 10ିହ 
5.51× 10ିହ 

8.31× 10ି଺ 
1.07× 10ିହ 
9.01× 10ି଺ 
1.70× 10ିହ 

3.67× 10ିହ 
4.92× 10ି଺ 
2.89× 10ି଺ 
3.92× 10ି଺ 

4.46× 10ି଺ 
4.72× 10ି଻ 
3.30× 10ି଻ 
1.80× 10ି଻ 

1.61× 10ିଷ 
1.67× 10ିଵ 
1.07× 10ିସ 
2.17× 10ିସ 

Step Test Loss Components Total Test Loss 
0 1.26× 10ିଵ 3.80× 10ିଷ 2.25× 10ିଶ 9.15 1.93× 10ିଶ 1.20× 10ିଵ 1.72× 10ିସ 9.49 

1000 
5000 
9000 

10000 

2.09× 10ିସ 
2.76× 10ିହ 
9.81× 10ି଺ 
1.71× 10ିହ 

2.43× 10ିସ 
5.35× 10ିହ 
2.81× 10ିହ 
9.77× 10ିହ 

6.54× 10ିହ 
5.77× 10ି଺ 
3.72× 10ି଺ 
5.65× 10ି଺ 

9.64× 10ିସ 
4.43× 10ିହ 
3.32× 10ିହ 
5.51× 10ିହ 

8.31× 10ି଺ 
1.07× 10ିହ 
9.01× 10ି଺ 
1.70× 10ିହ 

3.67× 10ିହ 
4.92× 10ି଺ 
2.89× 10ି଺ 
3.92× 10ି଺ 

4.46× 10ି଺ 
4.72× 10ି଻ 
3.30× 10ି଻ 
1.80× 10ି଺ 

1.53× 10ିଷ 
1.47× 10ିସ 
8.71× 10ିହ 
1.45× 10ିସ 

B. Predictive Accuracy  

The L2 relative error for the x-velocity component (u) 
compared to the analytical Poiseuille solution was 0.0861 
(8.61%) [4], indicating strong agreement [2]. 

C. Velocity Profile Comparison 

Fig. 1 compares the predicted and analytical velocity profiles 
at x = 0. 

 
Fig. 1. [PINN-predicted velocity profile (solid blue) versus 

analytical Poiseuille profile (dashed black) at x = 0]. 

The PINN accurately reproduces the parabolic velocity 
profile, with maximum velocity at y = 0 and zero at y = ±1 [2]. 
Minor boundary deviations align with Rectangle boundary 
normal warnings, suggesting improved boundary handling as 
a future enhancement [8]. 
The PINN effectively solved the Navier-Stokes equations, 
with all loss components converging to low values [4]. The 
hybrid optimization strategy (Adam followed by L-BFGS-B) 

ensured robust convergence [9, 10]. The 8.61% 𝐿ଶ error and 
visual agreement in Fig. 1 confirm the PINN’s accuracy for 
Poiseuille flow [2]. TensorFlow 1.x deprecation and boundary 
condition warnings suggest migrating to TensorFlow 2.x and 
refining corner point handling for improved performance [8]. 
The mesh-free nature of PINNs makes them advantageous for 
complex geometries and sparse data scenarios [6, 11]. 

IV. CONCLUSION 

This study successfully demonstrated the application of a 
Physics-Informed Neural Network to solve the 2D steady 
incompressible Navier-Stokes equations for Poiseuille flow in 
a rectangular channel. The PINN achieved a low total test loss 
of 8.71 × 10ିହ after 10,000 training steps and an 𝐿ଶ relative 
error of 8.61% for the x-velocity field. The predicted velocity 
profile closely matched the analytical parabolic profile, 
validating the approach. These results highlight PINNs as a 
powerful, mesh-free tool for fluid dynamics, with potential 
applications in complex flow scenarios such as turbulent or 
multiphase flows.  
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