
PHYSICSAccess Research Paper
ISSN Online: 2756-3898, ISSN Print: 2714-500X https://doi.org/10.47514/phyaccess.2025.5.1.014

VOLUME 05, ISSUE 01, 2025 126 ©DOP_KASU Publishing

Physics-Informed Neural Network for Solving 2D
Steady Incompressible Navier-Stokes Equations:
Application to Poiseuille Flow

Peter Anthony1, Philibus M Gyuk2 and Isaac H Daniel2

1 Department of Mathematical Sciences, Kaduna State University, Kaduna, 900211, Nigeria
2 Department of Physics, Kaduna State University, Kaduna, 900211, Nigeria

Corresponding E-mail: p.anthony@kasu.edu.ng

Received 13-05-2025
Accepted for publication 17-06-2025
Published 18-06-2025

Abstract

This study explores the application of Physics-Informed Neural Networks (PINNs) to solve the
two-dimensional steady incompressible Navier-Stokes equations, focusing on Poiseuille flow
in a rectangular channel. Implemented using the DeepXDE library with a TensorFlow 1.x
backend, the PINN embeds the governing partial differential equations and boundary
conditions into its loss function. The neural network architecture consists of four hidden layers,
each with 64 neurons. A hybrid optimization strategy, combining Adam (10,000 steps) and L-
BFGS-B, ensured robust convergence. The composite loss function, comprising seven
components (three for momentum and continuity equations, four for boundary conditions),
decreased significantly, achieving a total test loss of 8.71 × 10ିହ at step 9000. The predicted
x-velocity component (u) was evaluated against the analytical Poiseuille solution, yielding an
𝐿ଶ relative error of 0.0861 (8.61%). Visual comparisons confirm that the PINN accurately
captures the parabolic velocity profile characteristic of Poiseuille flow. This work underscores
the potential of PINNs as a data-efficient, mesh-free approach for solving fundamental fluid
dynamics problems, paving the way for their application to more complex flow scenarios.

Keywords: Physics-Informed Neural Networks; Navier-Stokes Equations; Poiseuille Flow; DeepXDE; Computational Fluid
Dynamics; Machine Learning.

I. INTRODUCTION

he solution of partial differential equations (PDEs) is a
cornerstone of scientific and engineering disciplines,

underpinning advancements in fluid dynamics, heat transfer,
structural mechanics, and beyond [1]. In fluid dynamics, the
Navier-Stokes equations, which describe the motion of
viscous fluids, are particularly critical due to their ability to
model a wide range of physical phenomena, from laminar
flows in pipes to turbulent flows in aerospace applications [2].
Traditionally, numerical methods such as Finite Difference,
Finite Element, and Finite Volume techniques have been

employed to solve these equations [1]. While effective, these
methods often require extensive computational resources,
high-quality mesh generation, and significant preprocessing,
especially for problems involving complex geometries or
high-dimensional domains [1]. In recent years, the advent of
machine learning, particularly deep learning, has opened new
avenues for solving PDEs [3]. Physics-Informed Neural
Networks (PINNs) represent a paradigm shift by integrating
the governing physical laws directly into the neural network's
loss function, combining the universal approximation
capabilities of neural networks with the rigour of physical
constraints [4]. Unlike traditional methods, PINNs are mesh-

T

PHYSICSAccess Peter et al.

VOLUME 05, ISSUE 01, 2025 127 ©DOP_KASU Publishing

free, allowing for greater flexibility in handling irregular
domains, and can incorporate sparse observational data,
making them suitable for data-scarce scenarios [3]. Their
ability to learn solutions directly from the PDEs and boundary
conditions without requiring extensive labelled datasets has
positioned PINNs as a promising tool for computational
physics [3, 4]. Despite their potential, the application of
PINNs to fluid dynamics problems, particularly the
incompressible Navier-Stokes equations, remains an active
area of research. Many studies have focused on simplified or
one-dimensional problems or have relied on synthetic data to
validate PINN performance [5, 6]. However, the robustness of
PINNs in accurately capturing the complex, non-linear
behaviour of two-dimensional (2D) steady flows, such as
Poiseuille flow, under realistic boundary conditions, has not
been thoroughly explored [7]. Moreover, challenges such as
numerical stability at domain boundaries, optimization
convergence, and computational efficiency persist,
particularly when using frameworks like DeepXDE with older
backends like TensorFlow 1.x [8]. These gaps highlight the
need for detailed investigations into the practical
implementation and performance of PINNs for benchmark
fluid dynamics problems.

This study addresses these gaps by applying a PINN to
solve the 2D steady incompressible Navier-Stokes equations
for Poiseuille flow in a rectangular channel. Poiseuille flow, a
classical laminar flow between parallel plates driven by a
pressure gradient, serves as an ideal benchmark due to its well-
established analytical solution [2]. The primary objective is to
demonstrate the PINN’s ability to accurately predict the
velocity components (u, v) and pressure field (p) while
satisfying the governing PDEs and boundary conditions. By
leveraging the DeepXDE library and a hybrid optimization
strategy, this work aims to provide a robust and reproducible
framework for PINN-based fluid dynamics simulations [8, 9,
10]. The novelty of this research lies in its comprehensive
evaluation of PINN performance for a 2D steady flow
problem, focusing on practical implementation details and
quantitative accuracy metrics [5]. Unlike prior studies that
often emphasize theoretical formulations or simplified cases,
this work provides a detailed analysis of loss evolution,
boundary condition enforcement, and predictive accuracy
using a realistic Poiseuille flow setup [2]. Additionally, it
addresses practical challenges such as boundary-related
numerical warnings and TensorFlow deprecation, offering
insights into improving PINN implementations [8]. By
achieving a low L2 relative error accurately and capturing the
parabolic velocity profile, this study underscores the potential
of PINNs as a data-efficient, mesh-free alternative to
traditional computational fluid dynamics (CFD) methods,
paving the way for their application to more complex flow
scenarios [6, 11].

II. METHODS

The PINN was implemented using the DeepXDE library [8]

with a TensorFlow 1.x backend, despite noted deprecation
warnings.

A. Governing Equations

The 2D steady incompressible Navier-Stokes equations
govern the conservation of mass and momentum for a
Newtonian fluid. For velocity components u (x-direction), v
(y-direction), pressure p, and kinematic viscosity ν, the
equations are:

1. Continuity Equation (Conservation of Mass):
డ௨

డ௫
+

డ௩

డ௬
= 0 (1)

2. X-momentum Equation:

𝑢
డ௨

డ௫
+ 𝑣

డ௨

డ௬
= −

ଵ

ఘ

డ௣

డ௫
+ 𝜇

డమ௨

డ௫మ + 𝜇
డమ௨

డ௬మ (2)

3. Y-momentum Equation:

𝑢
డ௩

డ௫
+ 𝑣

డ௩

డ௬
= −

ଵ

ఘ

డ௣

డ௬
+ 𝜇

డమ௩

డ௫మ + 𝜇
డమ௩

డ௬మ (3)

Here, 𝜌 = 1 for simplicity, and 𝜇 = 0.01.

B. Domain and Boundary Conditions

The computational domain is a rectangular channel defined by
𝑥 ∈ [−𝐿, 𝐿], 𝑦 ∈ [−1, 1], 𝑤𝑖𝑡ℎ 𝐿 = 5.0. The boundary
conditions are:
- Inflow at x = −L: A parabolic velocity profile for u:
𝑢(−𝐿, 𝑦) = 4(1 − 𝑦ଶ) (4)

𝑣(−𝐿, 𝑦) = 0 (5)

- No-penetration at Top/Bottom Walls (y = ±1):
𝑣(𝑥, ±1) = 0 (6)

- Outflow at x = L: Zero pressure gradient:
డ௣

డ௫
(𝐿, 𝑦) = 0 (7)

Warnings about Rectangle boundary normal called on vertices
were observed, indicating potential numerical issues at
domain corners. Future work could use PDE(...,
exclusions=...) to address this [8].

C. Neural Network Architecture and Training

The PINN uses a feed-forward neural network with:
- 2 input neurons (x, y).
- Fur hidden layers, each with 64 neurons, using tanh
activation.
- 3 output neurons (u, v, p).
Weights were initialized using the Glorot normal distribution
[12]. The loss function combines residuals of the Navier-
Stokes equations and boundary conditions, using 4000
collocation points in the domain, 400 boundary points, and
1000 test points (though 1065 were sampled) [8]. Training
followed a two-stage strategy:

1. Adam Optimizer: 10,000 epochs with a learning
rate of 1 × 10ିଷ for initial convergence [9].

2. L-BFGS-B Optimizer: Fine-tuning for higher
precision [8].

PHYSICSAccess Peter et al.

VOLUME 05, ISSUE 01, 2025 128 ©DOP_KASU Publishing

III. RESULTS AND DISCUSSION

The training process was evaluated by monitoring the
composite loss function, comprising residuals of the three
PDEs and four boundary conditions [4].

A. Loss Evolution During Training

Table I shows the training and test losses at selected steps. The
initial high loss at step 0 (9.49) was dominated by the inflow

boundary condition [8]. Losses decreased consistently with
the Adam optimizer, reaching a total test loss of 8.71 × 10ିହ
at step 9000 [9]. The test loss closely tracked the training loss,
indicating no significant overfitting [4]. The Adam phase took
approximately 10,177.5 seconds (≈ 2 hours 50 minutes), with
L-BFGS-B fine-tuning adding 37.15 seconds, yielding
minimal further improvement [10].

Table I. Training and test losses at selected steps.

Step Train Loss Components Total Train loss
0 1.21× 10ିଵ 3.72× 10ିଷ 2.28× 10ିଶ 9.15 1.93× 10ିଶ 1.20× 10ିଵ 1.72× 10ିସ 9.49

1000
5000
9000

10000

2.26× 10ିସ
2.98× 10ିହ
1.23× 10ିହ
1.91× 10ିହ

2.98× 10ିସ
7.10× 10ିହ
4.45× 10ିହ
1.16× 10ିସ

7.37× 10ିହ
6.47× 10ି଺
4.30× 10ି଺
6.15× 10ି଺

9.64× 10ିସ
4.43× 10ିହ
3.32× 10ିହ
5.51× 10ିହ

8.31× 10ି଺
1.07× 10ିହ
9.01× 10ି଺
1.70× 10ିହ

3.67× 10ିହ
4.92× 10ି଺
2.89× 10ି଺
3.92× 10ି଺

4.46× 10ି଺
4.72× 10ି଻
3.30× 10ି଻
1.80× 10ି଻

1.61× 10ିଷ
1.67× 10ିଵ
1.07× 10ିସ
2.17× 10ିସ

Step Test Loss Components Total Test Loss
0 1.26× 10ିଵ 3.80× 10ିଷ 2.25× 10ିଶ 9.15 1.93× 10ିଶ 1.20× 10ିଵ 1.72× 10ିସ 9.49

1000
5000
9000

10000

2.09× 10ିସ
2.76× 10ିହ
9.81× 10ି଺
1.71× 10ିହ

2.43× 10ିସ
5.35× 10ିହ
2.81× 10ିହ
9.77× 10ିହ

6.54× 10ିହ
5.77× 10ି଺
3.72× 10ି଺
5.65× 10ି଺

9.64× 10ିସ
4.43× 10ିହ
3.32× 10ିହ
5.51× 10ିହ

8.31× 10ି଺
1.07× 10ିହ
9.01× 10ି଺
1.70× 10ିହ

3.67× 10ିହ
4.92× 10ି଺
2.89× 10ି଺
3.92× 10ି଺

4.46× 10ି଺
4.72× 10ି଻
3.30× 10ି଻
1.80× 10ି଺

1.53× 10ିଷ
1.47× 10ିସ
8.71× 10ିହ
1.45× 10ିସ

B. Predictive Accuracy

The L2 relative error for the x-velocity component (u)
compared to the analytical Poiseuille solution was 0.0861
(8.61%) [4], indicating strong agreement [2].

C. Velocity Profile Comparison

Fig. 1 compares the predicted and analytical velocity profiles
at x = 0.

Fig. 1. [PINN-predicted velocity profile (solid blue) versus

analytical Poiseuille profile (dashed black) at x = 0].

The PINN accurately reproduces the parabolic velocity
profile, with maximum velocity at y = 0 and zero at y = ±1 [2].
Minor boundary deviations align with Rectangle boundary
normal warnings, suggesting improved boundary handling as
a future enhancement [8].
The PINN effectively solved the Navier-Stokes equations,
with all loss components converging to low values [4]. The
hybrid optimization strategy (Adam followed by L-BFGS-B)

ensured robust convergence [9, 10]. The 8.61% 𝐿ଶ error and
visual agreement in Fig. 1 confirm the PINN’s accuracy for
Poiseuille flow [2]. TensorFlow 1.x deprecation and boundary
condition warnings suggest migrating to TensorFlow 2.x and
refining corner point handling for improved performance [8].
The mesh-free nature of PINNs makes them advantageous for
complex geometries and sparse data scenarios [6, 11].

IV. CONCLUSION

This study successfully demonstrated the application of a
Physics-Informed Neural Network to solve the 2D steady
incompressible Navier-Stokes equations for Poiseuille flow in
a rectangular channel. The PINN achieved a low total test loss
of 8.71 × 10ିହ after 10,000 training steps and an 𝐿ଶ relative
error of 8.61% for the x-velocity field. The predicted velocity
profile closely matched the analytical parabolic profile,
validating the approach. These results highlight PINNs as a
powerful, mesh-free tool for fluid dynamics, with potential
applications in complex flow scenarios such as turbulent or
multiphase flows.

ACKNOWLEDGEMENT

This research was fully funded by Institutional Based
Research (IBR) of the Tertiary Education Trust Fund
(TETFUND) of Nigeria through Kaduna State University.

References

[1] J. H. Ferziger and M. Peri´c, Computational Methods
for Fluid Dynamics, 3rd ed. Berlin: Springer, 2002.

[2] F. M. White, Fluid Mechanics, 7th ed. New York:
McGraw-Hill, 2011.

[3] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P.

PHYSICSAccess Peter et al.

VOLUME 05, ISSUE 01, 2025 129 ©DOP_KASU Publishing

Perdikaris, S. Wang, and L. Yang, "Physics-informed
machine learning," Nature Rev. Phy., vol. 3, pp. 422–
440, 2021.

[4] M. Raissi, P. Perdikaris, and G. E. Karniadakis,
"Physics-informed neural networks: A deep learning
framework for solving forward and inverse problems
involving nonlinear partial differential equations," J.
Comput. Phys., vol. 378, pp. 686–707, 2019.

[5] S. Cai, Z. Wang, S. Fuest, Y. J. Jeon, C. Gray, and G.
E. Karniadakis, "Flow over an espresso cup:
Inferring 3D velocity and pressure fields from
tomographic background oriented schlieren via
physics-informed neural networks," J. Fluid Mech.,
vol. 915, A102, 2021.

[6] X. Jin, S. Cai, H. Li, and G. E. Karniadakis, "NSFnets
(Navier-Stokes flow nets): Physics-informed neural
networks for the incompressible Navier-Stokes
equations," J. Fluid Mech., vol. 915, A91, 2021.

[7] L. Sun, H. Gao, S. Pan, and J. X. Wang, "Surrogate
modelling for fluid flows based on physics-
constrained deep learning without simulation data,"
Comput. Methods Appl. Mech. Eng., vol. 361, p.
112732, 2020.

[8] L. Wang, X. Zhou, X. Liu, J. Yang, and G. E.
Karniadakis, "DeepXDE: A deep learning library for
solving differential equations," SIAM Rev., vol. 63,
no. 4, pp. 733–757, 2021.

[9] D. P. Kingma and J. Ba, "Adam: A method for
stochastic optimization," Proceedings of the 3rd
International Conference on Learning
Representations (ICLR), Banff, 14-16 April 2014.

[10] R. H. Byrd, P. Lu, J. Nocedal, and C. Zhu, "A limited
memory algorithm for bound constrained
optimization," SIAM J. Sci. Comput., vol. 16, no. 5,
pp. 1190–1208, 1995.

[11] Z. Mao, A. D. Jagtap, and G. E. Karniadakis,
"Physics-informed neural networks for high-speed
flows," Comput. Methods Appl. Mech. Eng., vol.
360, p. 112789, 2020.

[12] X. Glorot and Y. Bengio, "Understanding the
difficulty of training deep feedforward neural
networks," Proceedings of the Thirteenth
International Conference on Artificial Intelligence
and Statistics, pp. 249–256, 2010.

