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Abstract 

In this paper, the Born-Mayer potential is used to describe the core-shell polystyrene 
nanoparticle and the Schrodinger equation for this nanoparticle is solved rigorously using the 
Nikiforov-Uvarov (NU) method to obtain the exact bound state solutions and energy spectrum. 
This is achieved by inserting the Born-Mayer potential into the Time Independent Schrödinger 
Equation (TISE), obtaining the radial part and solving, exactly, for the expectation values of 
the energy spectrum and the corresponding eigenfunctions applying the Nikiforov Uvarov 
(NU) method. The eigenvalue expression obtained is similar to earlier work on Soliton solution 
in nonlinear lattice with the nearest neighbor Born-Mayer interaction. 
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I. INTRODUCTION 

any quantum mechanical systems are very complex to 
describe and difficult to solve exactly, hence the 

necessity of approximation methods. However, the exact 
solutions of the Schrödinger equations, which are in effect the 
bound state solutions of the radial part of the Schrödinger 
equation, have been playing important roles(in physics and 
chemistry) in obtaining the wave functions associated with 
various physical systems and their corresponding energy 
eigenvalues as well as understanding their non-relativistic 
dynamic evolutions [1, 2, 3, 4]. Moreover, due to the various 
types of mathematical challenges being encountered in 
solving complex systems analytically/exactly [5, 7], different 

methods have been developed for solving the Schrödinger 
equation with various potentials [3]. Among such methods 
include the asymptotic iteration method (AIM) [8], the 
supersymmetric approach [9], the algebraic method [10], the 
variational method [11], the shape invariant method [12], the 
Nikiforov–Uvarov method (NU) [13] amongst others. The NU 
method promises to be suitable for obtaining analytical 
solutions of the Schrodinger equation with the Born-Mayer 
potential, a potential which plays a vital role in many branches 
of physics such as atomic, molecular, solid-state physics and 
chemical physics [15]. Reference [16] presented a theoretical 
approach to calculate the absorption coefficient of silicon 
nanostructure. He used quantum mechanical calculation on 
the interaction of photons with the electrons of the valence 
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band; one model is that the oscillator strength of the direct 
optical transition is enhanced by the quantum confinement 
effect in silicon nanocrystallites. He discovered that the 
absorption coefficient showed a peak at high photon energy. 
Similarly, [17] calculated the optical absorption coefficient of 
a silicon nanowire using a quantum mechanical model and 
discovered a very good agreement between theory and 
experimental data at low photon energies and the discrepancy 
between experimental data and theory at high photon energies 
probably due to free carrier absorption as well. In this research 
work, the radial Schrodinger equation with interacting Born-
Mayer potential is used to calculate the energy spectrum of 
polystyrene silver nanoparticles.  

II. REVIEW OF NIKIFOROV-UVAROV (NU) METHOD 

The Nikiforov-Uvarov (NU) method is based on solving a 
second-order linear differential equation by reducing it to a 
generalized hypergeometric equation. The NU method has 
been used to solve the Schrödinger, Dirac and Klein-Gordon 
wave equation for certain kinds of potential [18]. The NU 
equation is given as 

𝜓″(𝑠) +
̄ ( )

( )
𝜓′(𝑠) +

̄ ( )

( )
𝜓(𝑠) = 0  (1) 

Where 𝜎(𝑠) and �̄�(𝑠) are polynomials, at most second-
degree, and �̄�(𝑠) is a first-degree polynomial. To find a 
particular solution to (1), we use the following transformation. 
𝜓(𝑠) = 𝜙(𝑠)𝜒(𝑠)    (2) 
This reduces (1) to hypergeometric equation, 
𝜎(𝑠)𝜒″(𝑠) + 𝜏(𝑠)𝜒 ′(𝑠) + 𝜆𝜒(𝑠) = 0  (3) 
Where 𝜙(𝑠) is defined as a logarithmic derivative 
′( )

( )
=

( )

( )
     (4) 

The other part 𝜒(𝑠) is the hypergeometric function whose 
polynomials are given by the Rodrigues relation, 

𝜒 (𝑠) =
( )

( )
[𝜎 (𝑠)𝛼(𝑠)]   (5) 

Where 𝛣 is a normalization constant and the weight function 
𝛼(𝑠) must satisfy the condition 

𝜎(𝑠)𝛼(𝑠) = 𝜏(𝑠)𝛼(𝑠)    (6) 

The function 𝜋(𝑠) and the parameter 𝜆 required for the NU 
method are defined as follows: 

𝜋(𝑠) =
′( ) ̄ ( )

±
′( ) ̄ ( )

− �̄�(𝑠) + 𝑘𝜎(𝑠) (7) 

𝜆 = 𝑘 + 𝜋 ′(𝑠)     (8) 
On the other hand, to find the value of 𝑘, the expression under 
the square root must be the square of the polynomial. Thus, a 
new eigenvalue for the second-order differential equation 
becomes, 

𝜆 = 𝜆 = −𝑛𝜏 ′(𝑠) −
( )

𝜎″(𝑠)   (9) 

Where, 

𝜏(𝑠) = 𝜏 ′( )( )     (10) 
The derivative of (10) is negative. The energy eigenvalues are 
obtained by comparing (8) and (9). 

III. EXACT SOLUTIONS OF SCHRÖDINGER EQUATION WITH 

BORN-MAYER POTENTIAL IN SPHERICAL COORDINATE 

SYSTEM 

The Born-Mayer potential for polystyrene and silver 
nanoparticles [19] may be written as: 

𝑉(𝑟) = 𝜂𝑒 −     (11) 

Where 𝜂 and 𝜌 are empirical constants and 𝑟 is the distance 
between the polystyrene and silver nanoparticle. 
Without any loss in generality, (11) may be written as: 

𝑉(𝑟) = −     (12) 

Letting → 0, then (12) reduces to  

𝑉(𝑟) =      (13) 

The radial part of the Schrodinger equation with the Born-
Mayer potential is given as 

( )
𝑟 𝑅(𝑟) +

ℏ
𝐸 + = 𝜆(𝜆 + 1) 

   (14) 
or, 

( )
+

( )
+

ℏ
𝐸 + −

ℏ ( )
𝑅(𝑟) = 0(15) 

This equation cannot be solved analytically for 𝜆 ≠ 0 because 

of the centrifugal term . 

By employing the Greene-Aldrich approximation scheme of 
the form [20] 

≈      or     ≈    (16) 

where 
𝛿 =       (17) 

Let the coordinate transformation be  

𝑠 = 𝑒       (18) 

and choosing a function in the form of    sRrR  , where 

the transformation sr is valid, then (15) becomes, 

𝑠 + 𝑠 − 𝑠 𝑅(𝑠) +
ℏ

𝐸 + −

ℏ ( )
𝑅(𝑠) = 0    (19) 

or 
( )

+
( )

+
ℏ

𝐸 + −
ℏ ( )

𝑅(𝑠) = 0

      (20) 
Putting (16) into (20) reduces to,  

( )
+

( )
+ (−𝜀𝑠 + 𝛲𝑠 − 𝛾)𝑅(𝑠) = 0 

      (21) 

Where 𝜀 = −
ℏ

, 𝛲 =
ℏ

 and 𝛾 = 𝜆(𝜆 + 1) (22) 

By comparing (21) and (1) we get, 
�̄�(𝑠) = 2𝜌, 𝜎(𝑠) = 𝑠 and �̄�(𝑠) = −𝜀𝑠 + 𝛲𝑠 − 𝛾 (23) 
Substitute (23) into (7) yield 

𝜋(𝑠) = − ± − {−𝜀𝑠 + 𝛲𝑠 − 𝛾} + 𝑘𝑠 (24) 

or 
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𝜋(𝑠) = − − 𝜌 ± − 𝜌 + 𝜀𝑠 − 𝛲𝑠 + 𝛾 + 𝑘𝑠 (25) 

If 𝜌 → 0, (25) then reduces to  

𝜋(𝑠) = − ± 4𝜀𝑠 + 4(𝑘 − 𝛲)𝑠 + 1 + 4𝛾 (26) 

and the values of 𝑘is obtained as: 

𝑘± = 𝛲 ± 𝜀(1 + 4𝛾)    (27) 
So that (26) becomes: 

𝜋(𝑠) = − ±

4𝜀𝑠 + 4 𝛲 ± 𝜀(1 + 4𝛾) − 𝛲 𝑠 + 1 + 4𝛾 (28) 

The suitable choice of the polynomial π(s) to make the 
derivative of the polynomial τ(s) to be negative, is chosen as 

𝜋(𝑠) = − −

4𝜀𝑠 + 4 𝛲 − 𝜀(1 + 4𝛾) − 𝛲 𝑠 + 1 + 4𝛾 (29) 

or 

𝜋(𝑠) = − − 2√𝜀𝑠 − (1 + 4𝛾)   (30) 

By substituting (15) into (10), obtain 

𝜏(𝑠) = 2𝜌 + 2 − − 2√𝜀𝑠 − (1 + 4𝛾)  (31) 

or, 

𝜏(𝑠) = 2 (1 + 4𝛾) − 4√𝜀𝑠 (𝜌 + 1)  (32) 

Differentiate (32) gives  
𝜏 ′(𝑠) = −4√𝜀(𝜌 + 1)    (33) 
Similarly, by differentiating (30), get 
𝜋 ′(𝑠) = −2√𝜀     (34) 
Substitute (27) and (34) into (8) obtain the expression for 𝜆. 

𝜆 = 𝛲 − 𝜀(1 + 4𝛾) − 2√𝜀   (35) 
Substitute (33) into (9), obtain the expression for 

𝜆 = 𝜆 = −𝑛 −4√𝜀(𝜌 + 1) −
( )

𝜎″(𝑠) (36) 

where 
𝜎(𝑠) = 𝑠,𝜎 ′(𝑠) = 1, and 𝜎″(𝑠) = 0   (37) 
Putting (37) into (36) gives 

𝜆 = 𝜆 = −𝑛 −4√𝜀(𝜌 + 1)    (38) 

By comparing (35) and (38) yields, 
𝜆 = 𝜆       (39) 

𝛲 − 𝜀(1 + 4𝛾) − 2√𝜀 = −𝑛 −4√𝜀(𝜌 + 1)  (40) 

And solving (40) gives, 

𝜀 =
( ) ( )

     (41) 

So that from (22) and (41), we get 

𝐸 = −
ℏ

⋅
ℏ

( ) ( ) ⋅
ℏ

  (42) 

Which reduces to 

𝐸 = −
ℏ { ( ) }

    (43) 

Here 𝑛 = 0,1,2,3, … and 𝜆 are integers while 𝜂 and 𝜌 are 
empirical constants. 
Define the principal quantum number,𝑛 , as 

𝑛 = 2𝑛(𝜌 + 1) + 𝜆    (44) 
The quantum number 𝜆 must satisfy 𝜆 ≤ 𝑛 − 1 and hence it 
ranges from 0 to 𝑛 − 1. Then (43) becomes 

𝐸 = −
ℏ

     (45) 

This expression of (45) represents the bound-state energy 
levels of the polystyrene nanoparticle for the Born-Mayer 
Potential, which is similar to the energy equation obtained for 
nonlinear lattice with nearest neighbour Born-Mayer 
interaction [21]. 
To find the corresponding eigenfunctions for the radial 
equation in (15), it is noted that the polynomial solution of the 
hypergeometric-type function 𝜒 (𝑠) depends on the 
determination of the weight function 𝛼(𝑠). Thus, using (4), we 
obtain, 

( )

( )
=

( )

( )
     (46) 

Substituting (23) and (30) into (46) gives 
( )

( )
=

( )
− √𝜀 𝑑𝑠   (47) 

And integrating (47) gives  

𝜙(𝑠) = 𝑠
( )

𝑒 √     (48) 
But, 

(1 + 4𝛾) = √1 + 4𝜆 + 4𝜆 = 2𝜆 + 1  (49) 
So that (48) becomes     

𝜙(𝑠) = 𝑠ℓ𝑒 √      (50) 
The weight function can be obtained by expanding (6) and 
separating the variable to obtain 

( )

( )
=

( ) ( )

( )
    (51) 

But with 
( )

= 𝜎 ′(𝑠) = 1, where 𝜎(𝑠) = 𝑠   (52) 

and recalling (32), (51) yields 

( )

( )
=

( )( )
− 1 − 4√𝜀(𝜌 + 1) 𝑑𝑠 (53) 

which by integrating gives 

𝛼(𝑠) = 𝑠 ( )( )𝑒 √ ( )   (54) 
Substituting (54) into (5) gives the polynomial 𝜒(𝑠): 
𝜒 (𝑠) =

𝛣 (𝑠)𝑒 √ ( )𝑠 ℓ ( ) 𝑠 ℓ ( )𝑒 √ ( )

      (55) 
Writing (55) in the format of the Rodrigues relation of the 
associated Laguerre polynomials given by (56), 

𝐿 (𝑥) =
!
𝑒 𝑥 (𝑒 𝑥 )   (56) 

We obtain, 

𝐿
ℓ ( )

5√𝜀𝑠(𝜌 + 1) =

!
𝑒 √ ( )𝑠 ℓ ( ) 𝑠 ℓ ( )𝑒 √ ( )   (57) 

Where 𝛣 (𝑠) =
!
, and, 

𝜒 (𝑠) = 𝐿
( )

5√𝜀𝑠(𝜌 + 1)    (58) 
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Substituting (50) and (58) into (2) gives the total eigenfunction 
of the particle 

𝜓(𝑠) = ℜ ℓ𝑠
ℓ𝑒 √ 𝐿

ℓ ( )
5√𝜀𝑠(𝜌 + 1)  (59) 

Where ℜ is the normalization constant, which can be 
evaluated using the normalization condition  

∫ 𝜓∗∞
(𝑠)𝜓(𝑠)𝑑𝑠 = 1    (60) 

IV. RESULT AND DISCUSSION 

The radial wave function for polystyrene silver 
nanoparticles would be obtained considering boundary 
conditions and physical confinements. The energy state for 
this system (polystyrene silver nanoparticle) is considered 
based on the Born-Mayer potential. Fig. 1 shows a sketch of 
the potential 𝑉(𝑟)  as a function of the linear coordinate 𝑟(𝑚) 
for polystyrene silver nanoparticles. 

 
Fig. 1 Sketch of Born-Mayer potential. 

Fig. 2 shows that as the principal quantum number ( 𝑛p)  
increases the absolute value of the energy state decreases. This 
means an electron with the lowest value of "𝑛p” has more 
energy and is located on the orbital or wave function closer to 
the nucleus of the nanoparticle. As the value of "𝑛p” increases 
the atomic size of the nanoparticle increases and more orbital 
or wave functions are formed. At 𝑛p = 1 and 𝐸1 = 138.6 𝑒𝑉. 
The periodic nature is that the amplitude of the wave decays 
all through along the direction of propagation, this is because 
of the core-shell nature of polystyrene silver nanoparticles, 
and this creates a perturbation in the wave that results in the 
decay of the wave as it propagates.  at 𝑛p = 2 and 𝐸2 = 68.2 𝑒𝑉 
there is partial formation of the wave packet which is due to 
the high frequency that arises as the wave travels, and it makes 
the line of propagation of the wave to become compactable 
and the amplitude decay throughout the direction of 
propagation. 

The wave packet that over crowds at the middle is observed 
at the energy of 𝐸3 = 40.09 𝑒𝑉, 𝑛p = 3. This core region (over 

crowd) of the wave packet is due to the core region of the 
polystyrene silver nanoparticle and the shell region (less 
crowd) of the wave packet indicates the shell region of the 
polystyrene silver Nanoparticle [20, 21, 22]. Although, at 
𝐸  =  26. 8 𝑒𝑉, 𝑛 = 4 the wave packet nature of the 
probability distribution disappeared but high oscillation is 
observed due to high frequency and the wave became more 
compacted while the amplitude decay along the direction of 
propagation. 

 
Fig. 2 Energy State 𝐸 (𝑒𝑉) versus 𝑛  

At higher states 𝐸5 = 22.352 𝑒𝑉, 𝑛p = 5   some oscillations 
are lost as the value of  𝑛p  increases making the waves to be 
in phase as they travel. At an energy of 𝐸6 = 20.022 𝑒𝑉 and 𝑛p 
= 6 shows a combination of many waves having a distribution 
of frequencies which reinforced along the direction of 
propagation. The reinforcement is more pronounced. At the 
energy of 𝐸7 = 18.22 𝑒𝑉 and 𝑛p = 7, this is due to various 
components of sinusoidal waves of different phases and 
amplitudes which interfere constructively only over a small 
region of space of the core-shell nanoparticle. Hence, the 
constructive interference became more in the core region of 
the polystyrene silver nanoparticle. At energies 𝐸8 = 11.70 𝑒𝑉 
and 𝑛p = 8, 𝐸9 = 9.70 𝑒𝑉 and 𝑛p = 9. The interference may be 
due to the repulsion created by the Born-Mayer potential when 
the wave function of the inner-shell electrons or nuclei begins 
to overlap.  In [20] the study revealed that the energy and the 
probability distribution near the core centre of polystyrene 
silver nanoparticles increase as the quantum integer numbers 
𝑛p are enhanced. Hence, the wave distortions are sensible in 
the core-shell nanoparticle where the wave number is larger 
than the shell, because of the semiconductor behavior of the 
shell; the wave function is a damping wave [23]. The result in 
this research work is in good agreement with the literature 
because a sinusoidal wave whose amplitude drops 
exponentially with the radial distance is observed and this is 
due to the semiconductor nature of polystyrene silver 
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nanoparticle. Also, the formation of the wave packet at the 
core region of polystyrene silver nanoparticles is due to 
constructive interference of the sinusoidal waves. 

V. CONCLUSION 

The Nikiforov Uvarov (NU) method is used to solve the 
Schrödinger ss with the Born-Mayer potential of the Core-
shell polystyrene nanoparticle. The analytical expression for 
the energy spectrum and the corresponding eigenfunctions 
were obtained. It is found that the energy eigenvalues are 
degenerate depending on the allowed quantum numbers 𝑛p. 
These results may have many interesting applications in the 
different quantum mechanical systems such as in the 
thermodynamic properties of the system. 
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