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Abstract 

The heat conduction equation is a combination of first-order and second-order differential 
equations. Solving first-order differential equations is necessary to examine temperature as a 
function of time. Meanwhile, solving second-order differential equations is needed to examine 
temperature as a function of space. The heat flux equation is based on Fourier's law, which 
shows that temperature is a function of time and space. Understanding heat conduction can be 
improved by building a heat propagation model on the Solar ERK dryer plate. Analysis of heat 
propagation on the drying plate used the Finite Difference Approach (FDA) method with 
explicit and implicit schemes. With an explicit scheme, the FDA method calculates the 
temperature (T) at a point on the spatial derivative term, when T is at time t, while the implicit 
scheme calculates T at a point on the space derivative term when T is at time t+Δt. Heat 
propagation at each time change was analyzed by developing a program using the MATLAB 
17 application. The results of the analysis show that there are differences in heat propagation 
between the explicit and implicit schemes. The convergence and stability of calculations in 
explicit schemes are unstable, causing problems at the time step. Meanwhile, the implicit 
scheme is carried out simultaneously on all nodes so that convergence and stability are easily 
maintained, and there are no time-step limitations. 
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I. INTRODUCTION 

n a linear system, the second-order partial differential 
equations with certain limits consist of three groups: 

elliptic, hyperbolic, and parabolic. The partial differential 
equations for the three previous groups are analyzed using (1). 

𝑎
డమ௨

డ௫మ + 2𝑏
డమ௨

డ௫డ௬
+ 𝑐

డమ௨

డ௬మ + 𝑑
డ௨

డ௫
+ 𝑒

డ௨

డ௬
+ 𝑓𝑢 + 𝑔 = 0    (1) 

Where a, b, c, d, and e are functions of x and y, while f is a 
coefficient and g is a constant.  

In (1), if g = 0, then the equation is called a homogeneous 
partial differential equation [1], and one implementation of 
(1), or a partial differential equation in the form of a parabolic 
group, is heat conduction. 

The heat conduction equation combines first-order and 
second-order partial differential equations. In this equation, if 
heat changes with time, it is a first-order partial differential 
equation, whereas if heat changes with space, it is a second-
order partial differential equation. 

The change in heat over time is the heat flow in the nodes 
per unit of time, called heat flux. 

According to Fourier's law, the amount of heat flux is 
directly proportional to the temperature gradient for space 

(𝑑𝑇
𝑑𝑥ൗ ) [2]. The heat flux equation is written in the form (2). 

𝑞̇ = −𝑘𝜌𝐶
డ்

డ௫
        (2) 

Where 𝑞̇ is the heat flux (𝑐𝑎𝑙/𝑐𝑚ଶ/𝑠), 𝑘 is the thermal 
diffusion coefficient (𝑐𝑚ଶ/𝑠), 𝜌 is the mass density of the 
medium (𝑔/𝑐𝑚ଷ), 𝐶 is the heat capacity of the medium 
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(𝑐𝑎𝑙/𝑔/℃) and 𝑇 is the temperature ℃. Equation (2) shows 
that the heat flux is directly proportional to the change in 
temperature as a function of space. Changes in temperature at 
any point in the space will cause heat to propagate in that space 
[3], [4]. Heat propagation at each node can be determined 
using the heat conduction equation. Referring to (1), if the 
derivative type is a parabola, the heat conduction equation for 
one-dimensional space changes to (3). 

𝑘
డమ்(௫,௧)

డ௫మ =
డ்(௫,௧)

డ௧
        (3) 

Where 𝑇 is temperature, which is a function of space and time, 
while 𝑘 is the thermal diffusion coefficient.  

It suffices to note also that changes in temperature as a 
function of time cause changes in heat flux at each node, while 
changes in temperature as a function of space cause heat 
propagation at each node [5], [6]. Heat propagation is 
analyzed at each node in space using (2) and (3). 

Several studies have been carried out to advance the 
understanding of heat transfer, including the solution of partial 
differential equations using the Liebmann method, but this is 
done to measure the temperature distribution of metal rods [7]. 
Some authors used the analytical finite element method [8], 
zero-order Bessel equation [9], heat flow analysis in a cabinet 
dryer model using the finite difference method [10], and 
numerical solution of the finite difference method with an 
explicit scheme using MATLAB 7.6.0 [11]. However, a more 
effective way to increase understanding of heat transfer 
requires a more applicable method. One effective way is to use 
analysis of temperature changes in the Solar Greenhouse 
Effect or Efek Rumah Kaca (ERK). Heat transfer analysis is 
assisted by using a dryer [12] to determine heat propagation at 
each node. 

The ERK Solar dryer consists of several components: a 
drying oven, blower, heat-resistant pipe, hot water pump, 
thermostat, heat exchanger, and heater [13-14]. These tools 
function to convert heat by radiation into conduction or 
convection. Heat propagation by convection takes place in a 

heat exchanger, which functions to change the temperature 
and phase of a type of fluid. Meanwhile, heat propagation by 
conduction occurs on the plate in the drying oven. An analysis 
of temperature changes is carried out using a model to explore 
the heat transfer on the drying plate. 

The conduction heat transfer model consists of three 
schemes: explicit, implicit, and Crank-Nicolson [15-16]. The 
explicit scheme calculates the variable temperature at time 𝑡 +
1 based on the known time 𝑡. Then, in the implicit scheme 
using the Taylor series with approximation of the backward 
𝑇(𝑥, 𝑡) difference around the point 𝑡 + 𝛥𝑡and the center 
𝑇(𝑥 + 𝛥𝑥, 𝑡 + 𝛥𝑡)difference for and around the point x. 
Furthermore, in the Crank-Nicolson scheme, the solution 
approach 𝑇൫𝑥௜ , 𝑡௝ + 1൯ is calculated using a point network 

൫𝑥௜ , 𝑡௝൯ and a point network ൫𝑥௜ , 𝑡௝ − 1൯ [17], [18]. A heat 
propagation model was created on the Solar ERK dryer plate 
to develop heat conduction studies and make them more 
applicable. There hasn't been much development of 
propagation models with explicit and implicit schemes 
utilized for heat propagation on the Solar ERK dryer plate, and 
most research solely analyzes evidence with explicit schemes. 
This study's use of both explicit and implicit approaches will 
help us better comprehend how heat travels through space to 
every node. With this knowledge, we intend to develop heat 
conduction equations that can be applied to different 
tools/instruments other than ERK solar dryer plates. 

II. METHOD 

Heat propagation was analyzed on the Solar ERK dryer to 
develop the study of heat conduction. 

According to [12], this tool is a drying system that improves 
the quality of agricultural commodities. The drying system at 
Solar ERK consists of several components, as shown in Fig. 
1(a) shows the Solar ERK dryer system, while Fig. 1(b) shows 
several drying plates that function to dry agricultural 
commodities. 
 

 
Fig. 1ERK Solar dryer tools and components [12].
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The drying process can be found by analyzing the heat flux 
on the drying plate, the heat balance on the drying plate is 
analyzed using (4) [19]. 
𝑞(𝑥)𝐴𝛥𝑡ᇣᇧᇤᇧᇥ

௜௡௣௨௧

− 𝑞(𝑥 + 𝛥𝑥)𝐴𝛥𝑡ᇣᇧᇧᇧᇤᇧᇧᇧᇥ
௢௨௧௣௨௧

= 𝛥𝑥𝐴𝜌𝐶𝛥𝑇ᇣᇧᇧᇤᇧᇧᇥ
௦௧௢௥௔௚௘

     (4) 

Dividing (4) by the volume of the plate (∆𝑥𝐴), gives. 

 
௤(௫)ି௤(௫ା௱௫)

௱௫
= 𝜌𝐶

௱்

௱௧
       (5) 

In (5), the limit of the equation is the heat flux that 
propagates on the plate. 

Heat propagation on the drying plate uses the Finite 
Difference Approach (FDA) method with explicit and implicit 
schemes. With an explicit scheme, the FDA method calculates 
the temperature T at a point in the space derivative term when 
T is at any time t. Meanwhile, the implicit scheme calculates 
T at a point in the space derivative term when T is at any time. 
In the explicit scheme, the equations and solving techniques 
are straightforward, the scheme is solved node per node, 
whereas in the implicit scheme, it is done simultaneously on 
all nodes. 

Heat propagation on the drying plate uses the Finite 
Difference Approach (FDA) method with explicit and implicit 
schemes. With an explicit scheme, the FDA method calculates 
the temperature T at a point in the space derivative term when 
T is at time t [20]. Meanwhile, the implicit scheme calculates 
T at a point in the space derivative term when T is at time. In 
the explicit scheme, the equations and solving techniques are 
straightforward; the scheme is solved node per node, whereas 
in the implicit scheme, it is done simultaneously on all nodes. 
Referring to (3) numerically, explicitly or implicitly, the heat 
transfer on the drying plate can be analyzed using (6) and (7). 
1) Explicit schema 
𝑇௜

௡ାଵ = 𝑇௜
௡ + ቀ𝑘

௱௧

௱௫మ
ቁ (𝑇௜ିଵ

௡ − 2𝑇௜
௡ + 𝑇௜ାଵ

௡ )     (6) 

2) Implicit schema 
𝑇௜

௡ = ቀ−𝑘
௱௧

௱௫మ
ቁ 𝑇௜ିଵ

௡ାଵ + ቀ1 + 2𝑘
௱௧

௱௫మ
ቁ 𝑇௜

௡ାଵ + ቀ−𝑘
௱௧

௱௫మ
ቁ 𝑇௜ାଵ

௡ାଵ (7) 

The general algebraic equation is shown in (5), and the 

appropriate boundary conditions are used for calculation 
points at the initial boundary. This equation becomes the basis 
for programming heat propagation at each node in the drying 
plate. MATLAB 17 software is used to analyze heat 
propagation at each node. In programming, the notation is 
used with the upper index for time and the lower for space. 
The programming algorithm with MATLAB 17 software is as 
follows. 
(1) For j=1 for all i, the initial conditions T(t=0,x)=Tin are 

used, so that T(i,1)=Tin is obtained 
(2) Perform a for loop calculation for j from 1 to Nt 

(a) Perform a for loop calculation for i to Nx 
(i). If i=1 then T(i,j)=Ta (boundary condition at x=0) 
(ii). If i=Nx then T(i,j)=Tb (boundary condition at 

x=L) 
(iii). If i is other than 1 and Nx then calculate the value 

of T(i,j+1) 

(b) End for  
(3) End for j 
(4) Display the calculation results in graphical form 

III. RESULTS AND DISCUSSION 

Conduction is heat transfer caused by temperature 
differences within or between bodies in thermal contact 
without involving mass flow. The heat transfer of the ERK 
Solar drying plate occurs due to differences in body 
temperature, causing heat transfer by conduction. Heat 
propagation occurs in various directions, and the magnitude is 
proportional to the temperature gradient and the area 
perpendicular to the direction of the distribution. The heat 
transfer on the drying plate and the temperature flow, both 
explicitly and implicitly, are shown in Fig. 2. Fig. 2(a) shows 
the heat propagation during the time 𝛥𝑡, Fig. 2(b) depicts the 
heat propagation using the explicit scheme, while Fig. 2(c) 
illustrates the heat is spreading with the implicit scheme. 

 

 
Fig. 2 Heat distribution on the drying plate
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Fig. 2(a) shows that the heat propagation in the drying plate 
during the period 𝛥𝑡 is the same as the flow out of the plate. 
Referring to (2) and (4), the results of the numerical analysis 
of heat propagation is given in (8). 
𝑞(𝑥)𝛥𝑦𝛥𝑧𝛥𝑡 + 𝑞(𝑦)𝛥𝑥𝛥𝑧𝛥𝑡 = 𝑞(𝑥 + 𝛥𝑥)𝛥𝑦𝛥𝑧𝛥𝑡 + 𝑞(𝑦 +
𝛥𝑦)𝛥𝑥𝛥𝑧𝛥𝑡𝑞(𝑥)𝛥𝑦 + 𝑞(𝑦)𝛥𝑥 = 𝑞(𝑥 + 𝛥𝑥)𝛥𝑦 + 𝑞(𝑦 +

𝛥𝑦)𝛥𝑥
௤(௫)ି௤(௫ା௱௫)

௱௫
𝛥𝑥𝛥𝑦 +

௤(௬)ି௤(௬ା௱௬)

௱௬
𝛥𝑦𝛥𝑥 = 0  

௤(௫)ି௤(௫ା௱௫)

௱௫
+

௤(௬)ି௤(௬ା௱௬)

௱௬
= 0        (8) 

Equation (8) is an energy conservation equation, where 𝑞(𝑥) 
and 𝑞(𝑦) are heat fluxes in the 𝑥 and 𝑦 directions with units 
of 𝑐𝑎𝑙/𝑐𝑚ଶ/𝑠. 

In Fig. 2(b) and (c), a grid appears to be made in space with 
a distance 𝛥𝑥 and time 𝛥𝑡 to apply the FDA method. Referring 
to (3) the results of numerical analysis of estimated 
temperature as a function of time, at the initial conditions (at 
point 𝑖) using the Taylor series, it is obtained: 

𝑇(𝑡 + 𝛥𝑡) = 𝑇(𝑡) + ቀ
ௗ்

ௗ௧
ቁ

௜
𝛥𝑡 + ቀ

ௗమ்

ௗ௧మ
ቁ

௜

(௱௧)మ

ଶ!
ቀ

ௗయ்

ௗ௧య
ቁ

௜

(௱௧)య

ଷ!
+ ⋯   (9) 

𝑇(𝑡 − 𝛥𝑡) = 𝑇(𝑡) − ቀ
ௗ்

ௗ௧
ቁ

௧
𝛥𝑡 + ቀ

ௗమ்

ௗ௧మ
ቁ

௧

(௱௧)మ

ଶ!
− ቀ

ௗయ்

ௗ௧య
ቁ

(௱௧)య

ଷ!
+ ⋯(10) 

If (9) is reduced by (10) with very small 𝛥𝑡, we get (11). 

ቀ
ௗ்

ௗ௧
ቁ

௧
=

்(௧ା௱௧)ି்(௧ି௱௧)

ଶ௱௧
         (11) 

When solving second-order differential, referring to (9) and 
(10), if the variable of the two equations is converted to 
temperature as a function of space and the two equations are 
added together, the result will be given by (12). 

ቀ
ௗమ்

ௗ௫మቁ
௧

=
்(௫ା௱௫)ିଶ்(௫)ା்(௫ି௱௫)

ଶ(௱௫)మ        (12) 

Referring to (3) and changing this equation with (11) and 
(12), we obtain an estimate of temperature as a function of 
space and time given by (13). 

𝑇(𝑡 + 𝛥𝑡) = 𝑇(𝑡 − 𝛥𝑡) + ቀ
௱௧௞

௱௫మ
ቁ 𝑇(𝑥 + 𝛥𝑥) − 2𝑇(𝑥) + 𝑇(𝑥 −

𝛥𝑥)          (13) 
Based on (13), each node on each grid is labeled 𝑖 for 

position 𝑥 and 𝑛 for time, so (13) becomes (14). 

𝑇௜
௡ାଵ = 𝑇௜

௡ + ቀ𝑘
௱௧

௱௫మቁ (𝑇௜ିଵ
௡ − 2𝑇௜

௡ + 𝑇௜ାଵ
௡ )      (14) 

Equation (14) is the result of numerical analysis of the heat 
conduction equation for the explicit scheme. In the same way, 
a numerical analysis can be obtained for the implicit scheme, 
as in (6). Equation (6) makes a heat propagation model on the 
ERK solar drying plate. In making the propagation model so 
that the numerical iterations are stable, 𝛥𝑡 fulfils the stability 
requirements [21], [22]. The heat propagation model for the 
explicit scheme refers to (6), while the implicit scheme refers 
to (7). The heat propagation model uses MATLAB 17 
software; program listings and output programming with the 
software are as follows: 
(1) Listing of heat propagation programs with explicit 

schemes 
clear all 
clc 
Tin=0; 
Ta=1; 

Tb=0; 
L=0.5; 
t=0.3; 
k=0.1; 
Nx=15; 
Nt=50; 
x=linspace(0,L,Nx);         %make a point calculation x 
t=linspace(0,t,Nt);         %make a point calculation t 
delx=x(2)-x(1);             %count delx 
delt=t(2)-t(1);             %count delt 
Mk=delx^2/delt/k; 
M=delx^2/delt; 
fprintf('Value M/k = %6.2f \n',Mk) 
if Mk<=2 
    %displays an error when M does not meet so the 
program fails 
    %execution 
    Error ('program is unstable, please provide another 
value of Nt and Nx') 
end 
% if M fulfills then continue the calculation 
% empty matrix message y 
T=zeros(Nx,Nt);     % Nx is the number of rows, Nt is 
the number of columns 
% -- glorify explicit computation -- 
T(:,1)=Tin          % provide the initial value 
for j=1:Nt          % j is a time increment 
    for i=1:Nx      % i is an increment in the x direction 
        if i==1 
            T(i,j)=Ta;  % calculate for the initial conditions 
x=0 
        elseif i==Nx 
            T(i,j)=Tb;  % calculate for the initial conditions 
x=L 
        else 
            % calculate with explicit equations 
            T(i,j+1)=k/M*(T(i+1,j)+(M/k-2)*T(i,j)+y(i-1,j)); 
        end 
    end 
end 
% displays the results of calculations in graphical form, 
because they are independent 
% the variable is more than 1 then 3D graphics are used 
figure(1) 
surf(x,t,T(:,1:Nt)') 
ylabel('time, t') 
xlabel('long, x') 
zlabel('y') 

(2) Listing of heat propagation programs with implicit 
schemes 
clear all 
clc 
Tin=0; 
Ta=1; 
Tb=0; 
L=0.5; 
t=0.3; 
k=0.1; 
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Nx=15; 
Nt=50; 
x=linspace(0,L,Nx);         % make a calculation point x 
t=linspace(0,t,Nt);         % make a calculation point t 
delx=x(2)-x(1);             % calculate delx 
delt=t(2)-t(1);             % calculating delt 
M=delx^2/delt; 
alfa=M/k; 
%-- order matrix size -- 
T=zeros(Nx,Nt);             % T is the calculated result 
matrix 
C=zeros(Nx,1);              % C is a constant matrix 
A=zeros(Nx,Nx);             % A is the coefficient matrix 
%-- start the implicit calculation --  
% etting result matrix Y with initial conditions 
T(:,1)=yin; 
for j=1:Nt-1 
    for i=1:Nx 
        if i==1 
            % setting the coefficient matrix A on the 
boundary conditions x=0 
            A(i,i)=1; 
            C(i,1)=ya; 
        elseif i==Nx 

            % setting the coefficient matrix A on the 
boundary conditions x=L 
            A(i,i)=1; 
            C(i,1)=yb; 
        else 
            % setting the coefficient matrix A between the 
boundary conditions 
            A(i,i-1)=1; 
            A(i,i)=(alfa+2); 
            A(i,i+1)=1; 
            C(i,1)=-alfa*T(i,j); 
        end 
    end 
    T(:,j+1)=A\C;        % calculate the value of T at j+1 
end 
% displays the results of calculations in graphical form, 
because they are independent 
% the variable is more than 1 then 3D graphics are used 
figure(1) 
surf(x,t,T') 
ylabel('time, t') 
xlabel('long, x') 
zlabel('y') 

 

 
Fig. 3 Explicit scheme heat propagation. 

 

 

Fig. 4 Implicit schematic heat propagation.
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Fig. 3 and 4, illustrates a difference between the explicit and 
implicit heat transfer schemes. In the explicit scheme, the time 
index at the 𝑥 term or the second degree uses the current time 
or the jth index. If the 𝑥 direction is divided by 𝑁𝑥 calculation 
nodes with a length of 𝛥𝑥 and the t direction is divided by 𝑁𝑡 
calculation points with a length of Δt, the next calculation 
points are obtained. The solution is carried out simultaneously 
on all nodes in the implicit scheme. The difference between 
explicit and implicit schemes occurs because there are 
differences in completion, convergence, and time-step 
techniques. In the explicit scheme, the solution technique is 
straightforward but vulnerable to convergence and stability. 

With the implicit scheme, the solving technique is carried 
out simultaneously so that the convergence and stability of the 
calculations are easy to maintain. Using simulations from the 
heat propagation model on solar ERK drying plates makes it 
easier to understand the application of second-order partial 
differential equations. Especially with the analysis of explicit 
and implicit schemes. Because through simulation, spatial and 
mathematical abilities can be more easily understood [19], 
[23] and [24]. 

IV. CONCLUSION 

The heat conduction equation is a combination of first-order 
and second-order differential equations. A heat propagation 
model was made on the Solar ERK drying plate to develop 
equations that will enhance the study of heat conduction. Heat 
propagation uses the FDA method with an explicit and 
implicit scheme. The technique used in these two schemes is 
approached by the FDA moving forward while the central 
FDA approaches the other tribes. The FDA method uses 
numerical derivatives to represent solutions in discrete values 
on a uniformly spaced grid. The discrete values at each node 
for each grid are analyzed using numerical estimates to obtain 
temperature changes at each node. The results of numerical 
estimation analysis using explicit and implicit schemes show 
differences in heat transfer on the Solar ERK drying plate. The 
difference in propagation occurs due to differences in 
convergence, stability of calculations at each node and 
timestep. 

The convergence and stability of calculations in explicit 
schemes are unstable, causing problems at the time step. 
Meanwhile, the implicit scheme is carried out simultaneously 
on all nodes so that convergence and stability are easily 
maintained, and there is no time-step limitation. 
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